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Thermocapillary long waves in a liquid film flow.
Part 2. Linear stability and nonlinear waves
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We analyse the regularized reduced model derived in Part 1 (Ruyer-Quil et al. 2005).
Our investigation is two-fold: (i) we demonstrate that the linear stability properties of
the model are in good agreement with the Orr–Sommerfeld analysis of the linearized
Navier–Stokes/energy equations; (ii) we show the existence of nonlinear solutions,
namely single-hump solitary pulses, for the widest possible range of parameters.
We also scrutinize the influence of Reynolds, Prandtl and Marangoni numbers on
the shape, speed, flow patterns and temperature distributions for the solitary waves
obtained from the regularized model. The hydrodynamic and Marangoni instabilities
are seen to reinforce each other in a non-trivial manner. The transport of heat by the
flow has a stabilizing effect for small-amplitude waves but promotes the instability for
large-amplitude waves when a recirculating zone is present. Nevertheless, in this last
case, by increasing the shear in the bulk and thus the viscous dissipation, increasing
the Prandtl number decreases the amplitude and speed of the waves.

1. Introduction
The present study is devoted to the problem of long-wave instabilities – namely

hydrodynamic H- and thermocapillary S-modes (Goussis & Kelly 1991) – and
concomitant formation of solitary waves on the surface of a film falling down
a uniformly heated plane. In Part 1 (Ruyer-Quil et al. 2005), we developed a low-
dimensional model capable of capturing these phenomena in a wide range of Reynolds
numbers, i.e. in both drag–gravity and drag–inertia regimes (Ooshida 1999). The
model, which also takes into account the second-order dissipative effects that can
play an important role in the drag–inertia regime (Ruyer-Quil & Manneville 2000),
was referred to as the ‘second-order regularized reduced model’. It is rewritten here
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for ease of presentation:
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where the Kapitza, Marangoni, Biot and Prandtl numbers are defined as

Γ =
σ (T0)

ρν4/3(g sin β)1/3
, Ma =

−dσ/dT |T0
(Tw − T0)

ρν4/3(g sin β)1/3
, Bi =

q0 ν2/3

K(g sin β)1/3
, Pr =

ν

κ
,

and where σ is the surface tension, ρ the density, ν the viscosity, g sin β the streamwise
gravity component, q0 the heat transfer coefficient of the liquid–gas interface, K the
thermal conductivity of the liquid, κ the thermal diffusivity, Tw the wall temperature
and T0 a reference temperature, taken here as the ambient temperature Ta. This set
of parameters is completed by the flat-film thickness hN or equivalently the Reynolds
number

Re =
g sin βh3

N

3ν2
=

h̄3
N

3
(1.2)

while the product Pe= Pr Re defines the Péclet number. A bar in (1.2) has been
introduced to distinguish between dimensional and dimensionless quantities.

In § 2, the linear stability properties of (1.1) are examined and compared to results
from Orr–Sommerfeld analysis of the full Navier–Stokes/energy equations, the Benney
expansion, as well as the full-size model of reduced dimensionality (see Part 1), from
which (1.1) was derived through a regularization procedure. In § 3 we scrutinize
the effect of the Reynolds, Prandtl and Marangoni numbers on the shape, speed,
temperature distribution and flow patterns for the single-hump solitary waves obtained
from (1.1). We also explore the interaction between the S- and H-modes in the
nonlinear regime. Finally, a conclusion and discussion is offered in § 4.

2. Linear stability results
We now examine the linear stability of the basic Nusselt flow and we compare

the results obtained from the regularized reduced model to those obtained from
the Orr–Sommerfeld eigenvalue problem of the full Navier–Stokes/energy equations.
This eigenvalue problem was first formulated and solved by Goussis & Kelly (1991)
and the reader is referred to this study for details. It is also instructive here to
include the linear stability analysis obtained from the first-order model (§ 4.1 in
Part 1), boundary-layer equation (§ 3 in Part 1) and full-size second-order model
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(Appendix A in Part 1). The dispersion relation corresponding to (1.1) can be
obtained by introducing perturbations to the flat-film solution in the form of normal
modes with wavenumber k̃ and frequency ω̃ (here we focus on temporal stability so
that the wavenumber is real and the frequency complex)


h

q

θ
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h̄N

h̄3
N/3

1/(1 + Bi h̄N)


 + ε




1

Aq

Aθ


 exp{i(k̃x − ω̃t)} (2.1)

in (1.1) and then linearize for ε � 1. For the resulting system of linear algebraic
equations to have non-trivial solutions, it is necessary and sufficient that its principal
determinant be equal to zero. Similarly, substituting (2.1), si = εAsi

exp{i(k̃x − ω̃t)}
and ti = εAti exp{i(k̃x − ω̃t)} in the full-size model (see Appendix A of Part 1) gives
its dispersion relation.

To compare our linear stability analysis with the one performed by Kalliadasis et al.
(2003), we must non-dimensionalize the length scales with the Nusselt film thickness
hN. Still utilizing bars to distinguish dimensional and dimensionless quantities
when needed, we are thus led to the transformation k̃ = k/h̄N and ω̃ = h̄Nω, where
h̄N = (3Re)1/3 from (1.2). The phase speed c̃ = ω̃/k̃ is transformed to c̃ = h̄2

Nc. The
averaged velocity of the flat-film solution is then 1/3 with this scaling. A different set
of parameters based on the Nusselt flat-film solution therefore appears:

Ma�T =
−dσ/dT |T0

�T

ρh2
Ng sin β

, We =
σ (Ta)

ρgh2
N sin β

, B =
q0hN

K
, (2.2)

where �T is the temperature difference across the uniform fluid layer of thickness
hN. This set is completed by the definition of the Reynolds number given in (1.2).
These are effectively the parameters adopted by Kalliadasis et al. (2003) except that
these authors expressed the Weber number as the ratio of surface tension over inertia
forces instead of surface tension over gravitational forces as in (2.2).

Performing a small-wavenumber expansion of the dispersion relation D(k, ω; Re,
cot β , We, Pr, Ma�T , B), similar to the one performed by Kalliadasis et al. (2003),
leads to the following expression for the complex phase velocity:

c = 1 + ik
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3
+ O(k2) (2.3)

where We is considered to be large such that We k2 = O(1). Note that the above
expansion only gives the root of the dispersion relation that can become unstable. As
was pointed out by Kalliadasis et al. (2003), the other two roots are always stable.
The neutral stability condition is now easily found to be

c = 1, k =

√
1

We

(
6

5
Re − cotβ +

3Ma�T

2(1 + B)

)
. (2.4)

Therefore, linear waves propagate with a velocity three times the averaged velocity
or twice the interfacial velocity of the flat film. From (2.4) we also notice that
increasing the Reynolds number or Marangoni number enlarges the range of unstable
wavenumbers while decreasing β or increasing the Weber number has a stabilizing
effect.
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The onset of instability is obtained by considering the zero critical wavenumber as
given by (2.4). This yields the critical condition

6

5
Re +

3Ma�T

2(1 + B)
= cotβ, (2.5)

which is identical to the one obtained by Goussis & Kelly (1991) by performing
a small wavenumber expansion of the Orr–Sommerfeld eigenvalue problem of the
full Navier–Stokes/energy equations. The expression (2.5) has the same functional
form as the one derived by Kalliadasis et al. (2003) for two-dimensional waves at
criticality, but some of the coefficients are different: 6/5 instead of 1 in front of
the Reynolds number, i.e. a 20% error, and 3/2 in front of the Marangoni number
instead of 1/2 due to a factor of 3 introduced in the definition of the Marangoni
number by Kalliadasis et al. (2003). Notice that here we try as much as possible
to avoid numerical factors in the definitions of the dimensionless groups – with an
exception to this rule being the definition of the Reynolds number – so that numerical
factors in the equations do not change with different scalings. The discrepancy now
for the coefficient in front of the Reynolds number corresponds exactly to the one
observed using the Shkadov model (Shkadov 1967) in the case of an isothermal flow
(Ma�T = 0). This inaccuracy has been eliminated by using a more complete description
of the velocity field (Ruyer-Quil & Manneville 2000), which fully corrects the critical
Reynolds number. Notice also that the Benney expansion for the heated falling film
yields the correct critical Reynolds number (see Joo, Davis & Bankoff 1991). This is
not surprising since this expansion is exact close to criticality (see our discussion in
Part 1, § 1).

Let us now consider a falling film whose inclination angle, temperatures at the wall
and air side and all physical quantities are fixed such that the sole control parameter
is the liquid flux at the inlet or equivalently the Reynolds number Re ∝ h̄3

N. From
(2.2), one has Ma�T ∝ 1/h̄N ∝ Re−1/3, We ∝ 1/h̄2

N ∝ Re−2/3 and B ∝ Re1/3. Therefore,
if the flow rate is large, inertia effects are large and the interfacial forces due to the
Marangoni effects are not important compared to the dominant inertia forces, so that
the H-mode dominates in this regime. Conversely, in the limit of vanishing Reynolds
number, inertia effects are negligible and the Marangoni effect is very strong. This
corresponds to the S-mode described by Scriven & Sternling (1964). In this region
of small film thicknesses, the destabilizing forces are interfacial forces due to the
Marangoni effect (capillary forces are always stabilizing). Since now Ma�T /We ∝ Re1/3,
the critical wavenumber tends to zero as the Reynolds number tends to zero. This
seems to contradict the results obtained by Goussis & Kelly (1991) which predict
that the wavenumber approaches infinity in this limit. This inconsistency is due to
the fact that Goussis & Kelly based the definition of their Marangoni number on the
temperature difference across the basic flat film instead of the temperature difference
between the wall and the ambient gas phase. As a consequence their Marangoni
number should also depend on B (which in turn depends on Re) but this dependence
was not taken into account in their study.

The Orr–Sommerfeld problem is a set of two complex ordinary differential equations
of degree four and two, for the amplitudes of the perturbed cross-stream velocity
and perturbed temperature, respectively, and subject to six boundary conditions. As
these differential equations are linear, an integral constraint must be added, e.g.∫ 1

0
φ(y) dy = 1 with φ(y) the amplitude of the perturbed cross-stream velocity. The

Orr–Sommerfeld problem can then be recast in the form of a dynamical system of
dimension six and subject to the above integral constraint. To solve numerically this
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Figure 1. (a) Neutral stability curves in the (k̃,Re)-plane for Γ = 250, cotβ = 0, Pr = 7,
Ma = 50 and Bi= 1 from the different models. (b) Neutral stability curves in the (k,Re)-plane; k
is scaled with hN. Thick solid curve 1: Orr–Sommerfeld; dotted curve 2: full-size second-order
model; dot-dashed curve 3: first-order model; dashed curve 4: regularized reduced model
(1.1); solid curve 5: boundary-layer equations. The solid curve B corresponds to the Benney
long-wave expansion.

boundary-value problem, we utilized the long-wave nature of the instability. Indeed,
the zero-wavenumber mode is neutral, i.e. (k̃, ω̃) = (0, 0) is a solution of the eigenvalue
problem. Therefore the solution branches were constructed by continuation starting
from the trivial zero-wavenumber solution. For this purpose, we used the software
Auto97 developed by Doedel et al. (1997) and based on Keller’s pseudo-arclength
continuation method (Keller 1977). The same software was also used to obtain the
dispersion relations of the other systems, namely, first-order, full-size second-order,
boundary-layer and regularized reduced model.

In what follows, we fix the inclination angle β and all physical parameters – i.e.
we fix the liquid–gas system or, equivalently, cot β , Γ , Ma, Bi and Pr – as in a real
experiment where the inlet flow rate is the actual control parameter. Therefore, we only
vary the Nusselt film thickness hN, or equivalently, the Reynolds number Re. Figure 1
depicts the neutral stability curves in the wavenumber–Reynolds number plane for
Pr = 7, Γ = 250, cotβ =0, Ma= 50 and Bi =1 computed from the different models.
The figure also shows the stability map obtained from the full Orr–Sommerfeld
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stability analysis of the linearized Navier–Stokes/energy equations. The parameters
are chosen so that the differences between the various systems of equations can be
clearly identified. Hence the choice of an O(1) and therefore unrealistically ‘large’ Biot
number which would amplify the Marangoni effect. For the same reason, we choose
to plot in figure 1(a) the critical wavenumber k̃ defined through the length-scale
ν2/3(g sin β)−1/3 which only depends on the fluid parameters. Indeed as Re tends to
zero, the prediction for the critical wavenumber k given in (2.4) tends to zero as√

Ma�T /We ∝ h̄
1/6
N . Thus k̃ = k/h̄N ∝ h̄

−5/6
N approaches infinity in that limit and the

different curves are more easily separated.
The first-order model (curve 3) has already deviated from the other models at small

Reynolds numbers. This is due to the relatively ‘small’ Kapitza number indicating that
the second-order viscous effects are of primary importance in this regime. The full-
size second-order model (curve 2) compares very well with the exact Orr–Sommerfeld
solution (curve 1) even though at large Reynolds numbers it slightly underpredicts
the neutral wavenumber. However, this small discrepancy at large Reynolds numbers
cannot be attributed to the boundary-layer approximation (curve 5) since the trend
is inverted in this latter case and it is most likely due to the limited radius of
convergence of the perturbation scheme, as is the case with any approximate method.
Nevertheless, we note the excellent agreement between the full-size model (curve 2)
and the boundary layer equations (curve 5) for Re < 10. Notice also the saturation
of curves (1, 2, 5) for large Re: the critical wavelength 2π/k̃ remains constant in
this region and hence it is independent of the film thickness. On the other hand, at
low Reynolds numbers all models are in agreement with the solution of the Orr–
Sommerfeld eigenvalue problem. In this region, the dynamics of the flow is slaved to
its kinematics, i.e. both flow rate and interfacial temperature are adiabatically slaved
to the film thickness and they depend on time only through the dependence of the
film thickness on time. This is the region where the Benney long-wave expansion
applies.

Figure 1(b) depicts the marginal stability curves when the wavenumber is scaled
with the base-state film thickness hN. As expected, the curves approach the origin as
Re decreases. Figure 3(a) in the study by Kalliadasis et al. (2003) on the other hand,
indicates that for a vertically falling film with Ma �= 0 the neutral stability curves
intersect the wavenumber axis at finite values. However, this was due to the relatively
rough mesh in the computation of the neutral curves. A much smaller mesh shows
that for Reynolds numbers smaller than ∼ 10−4 (in terms of the scalings adopted by
Kalliadasis et al. 2003) and for the parameter values used in the figure, the neutral
curves turn sharply on themselves and approach the origin for very small Reynolds
numbers as in figure 1(b). Finally, notice that all curves in figure 1(b) approach a
plateau for Re ∼ 1.

By contrasting figures 1(a) and 1(b), it is evident that the principal advantage of
the scaling based on the length scale constructed from the kinematic viscosity and
gravitational acceleration, over the scaling based on the base-state film thickness, is
to enable a clear distinction between the H- and S-modes of instability identified by
Goussis & Kelly (1991). Indeed, the Orr–Sommerfeld neutral stability curve (curve 1)
has a minimum at R ≈ 5.6 in figure 1(a). This minimum corresponds to the transition
between the thermocapillary mode which predominates at low Reynolds numbers
and the classical hydrodynamic mode which prevails at larger Reynolds numbers.

Figure 2 shows the growth rate Imω̃ as function of k̃ for the long-wave instability
of the basic flat-film solution. For the ‘small’ value Re= 1, the growth rates predicted
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Figure 2. Growth rate Im ω̃ versus wavenumber k̃ for different Reynolds numbers obtained
from the Orr–Sommerfeld analysis (solid lines), the full-size model (dotted lines), the regularized
reduced model (dashed lines) and the Benney expansion (thin solid lines). Parameters are given
in the caption of figure 1.

by the regularized reduced model (1.1), the full-size model and the second-order
Benney expansion, are fairly close to the growth rate obtained by the exact
Orr–Sommerfeld stability analysis. For larger Reynolds numbers, the Benney expan-
sion no longer provides an accurate prediction for the growth rate, which increasingly
deviates from the exact solution as the Reynolds number increases. This divergence
is due to the fact that the Benney expansion assumes the dynamics of the flow
to be slaved to its kinematics which is obviously not true at large Reynolds numbers.
At Re= 50, where the H-mode is predominant, we note the good agreement of the
full-size model and the regularized reduced model with the exact Orr–Sommerfeld
analysis. At Re =10, the full-size model is in good agreement with the exact Orr–
Sommerfeld analysis while the regularized reduced model predicts a larger growth
rate (still, the agreement with Orr–Sommerfeld is qualitative for all wavenumbers).
This clearly shows the inability of the regularized reduced model to correctly take
into account the second-order convective terms in the heat equation and to describe
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Figure 3. Influence of the Biot number (a), the Marangoni number (b), the Prandtl number
(c) and the Kapitza number (d) on the marginal stability curves for a film falling down a
vertical plane: (a) Pr = 7, Ma = 50 and Γ =250; (b) Bi= 0.1, Pr = 7 and Γ = 250; (c) Bi= 0.1,
Ma = 50 and Γ = 250; (d) Bi= 0.1, Ma = 50 and Pr= 7. The solid lines correspond to the
Orr–Sommerfeld analysis and the dashed lines to the regularized reduced model (1.1).

the instability at large Péclet numbers where the S-mode is important. This issue will
be discussed in the next section.

Figure 3(a) depicts the marginal stability curves obtained from the regularized
reduced model (1.1) for a vertical plane and different Biot numbers. For Bi= O(1) the
influence of the Marangoni effect is large at small and moderate Reynolds numbers.
Indeed, if Bi tends to zero or infinity, the free-surface temperature of the undisturbed
solution, recalled in (2.1), becomes independent of hN and the Marangoni effect is
simply not an issue. For the other plots of figure 3, we choose a small Biot number,
Bi= 0.1, which is motivated by experiments on the problem of a film heated by a
local heat source (Kabov 1996; Kabov, Marchuk & Chupin 1996; Kabov et al. 2002)
indicating that the Biot number in experiments is indeed small.

We have also investigated the influence of the Marangoni, Prandtl and Kapitza
numbers and comparisons of the marginal stability curves obtained from Orr–
Sommerfeld and the regularized reduced model are given in figure 3. As expected, for
Ma= 0, we recover the classical hydrodynamic H-mode, with the corresponding curve
starting from the origin of the plane (k̃, Re) – see figure 3(b). For Pr =7, increasing
the Marangoni number increases the range of unstable wavenumbers, especially at
low Reynolds numbers where the Marangoni effect is predominant (S-mode). Again
the results obtained using the regularized reduced model compare very well with the
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lines are for the Orr–Sommerfeld analysis and dashed lines for the regularized reduced model.

Orr–Sommerfeld eigenvalue problem. Note, however, that at large Reynolds numbers,
the marginal stability curves obtained from Orr–Sommerfeld merge into a single curve
while the ones obtained from the regularized reduced model do not. Clearly, if Re is
sufficiently large, the hydrodynamic H-mode predominates and the thermocapillary
effects as measured by Ma do not modify significantly the critical wavenumber.
The small disparity of the curves corresponding to the regularized reduced model is
therefore a consequence of the increased inaccuracy of this model in the region of
large Péclet numbers.

Figure 3(c) depicts the effect of Prandtl number on the marginal stability curves. The
results now are less intuitive. Indeed, since the instability is primarily an inertia-driven
instability, at least if the H-mode predominates, a larger value of Pr would imply a
larger range of unstable wavenumbers since the Péclet number, Pe= PrRe, measuring
the convective effects in the heat transport equation is also larger. Nevertheless, it is
found that the Prandtl number has little influence for large Re (H-mode) whereas
the curves are strongly affected by the Prandtl number for small Re (S-mode). If
the S-mode predominates, the origin of the instability is the gradient of temperature
at the interface. This gradient may be weakened by the transport of heat from the
troughs to the crests due to the motion of the fluid, a process which is intensified with
large Prandtl numbers. Note that the regularized reduced model agrees better with
Orr–Sommerfeld for Pr =1 than for larger values of Pr.

Finally, figure 3(d) shows the influence of Kapitza number on the marginal stability
curves. Note the excellent agreement with the Orr–Sommerfeld eigenvalue problem
for large values of Γ (Γ = 3175 corresponds to water at 18 ◦C). Now, decreasing the
value of Γ increases the range of unstable wavenumbers and a discrepancy between
the regularized reduced model and the Orr–Sommerfeld eigenvalue problem appears,
which increases with decreasing Γ . It is precisely for this reason, i.e. to emphasize the
differences between the different models, that we choose the worse case scenario in
which the Kapitza number is relatively small, Γ = 250, throughout this study.

For non-vertical planes and Marangoni numbers Ma of O(1), the critical condition
(2.5) can lead to two different values for the onset of the instability corresponding to
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the H- and S-modes, respectively. This is confirmed in figure 4 for a plane inclined
at an angle β =15◦ with respect to the horizontal direction. For moderate values
of Ma, two distinct unstable regions are observed, each corresponding to a different
instability mode as reported first by Goussis & Kelly (1991). Note the excellent
agreement of the curves corresponding to the regularized reduced model (1.1) with
Orr–Sommerfeld in the vicinity of the two thresholds. This agreement results from
taking into account the second-order dissipative terms in our formulation and from
a correct representation of the instability threshold. Noticeable discrepancies between
the two sets of curves can be observed if the Marangoni number is increased or at
larger Reynolds numbers. Finally, we have analysed the linear stability properties of
different second-order reduced models, but in all cases, the system in (1.1) offers the
best agreement with Orr–Sommerfeld.

3. Solitary waves
We now seek travelling wave solutions of (1.1). Here we restrict our attention to

single-hump solitary waves. It is well known that for isothermal films, the long-time
evolution is characterized by a train of soliton-like coherent structures each of which
resembles the infinite-domain solitary pulses (see e.g. Alekseenko, Nakoryakov &
Pokusaev 1994). Although time-dependent computations are beyond the scope of
the present study, by analogy with the isothermal case, we anticipate that for the
non-isothermal problem studied here, the long-time evolution is also dominated by
solitary waves.

Comparisons of the different shapes of solitary waves is made easier by using
a scaling based on the intrinsic length scales of the structures considered. For this
purpose we adopt the scalings suggested by Shkadov (1977). These scalings are
motivated by the observation that the largest slope of a solitary wave is at the
front of the main solitary hump where the breaking of the wave is promoted by
the stream wise gravity force ρg sin β and balanced by the pressure gradient induced
by the surface tension ∝ σ∂xxxh. Therefore the characteristic slope 1/κ is given by
(ρgh2

N sin β/σ )1/3 = We−1/3. This analysis is valid at least close to the threshold of
instability where the range of unstable wavenumbers is small. Thus introducing the
transformation x → κh̄Nx, y → h̄Ny, u → h̄2

Nu, t → tκ/h̄N in the boundary-layer
equations (see § 3 in Part 1) yields

δ(∂tu + u∂xu + v∂yu) − (∂yy + 2η∂xx)u − η∂x[∂xu|h] − 1 + ζ∂xh − ∂xxxh = 0, (3.1a)

Prδ
(
∂tT + u∂xT + v∂yT

)
− (η∂xx + ∂yy)T = 0, (3.1b)

completed by the continuity equation ∂xu + ∂yv = 0, the boundary conditions

∂yu|h = η(4∂xh∂xu|h − ∂xv|h) − M∂x[T |h], (3.2a)

∂yT |h = −B

(
1 +

η

2
(∂xh)2

)
T |h + η∂xh∂xT |h, (3.2b)

the kinematic condition at the free surface ∂th+u|h∂xh = 0 and the Dirichlet conditions
at the wall, u|0 = v|0 = 0 and T |0 = 1. A set of ‘reduced’ parameters is now obtained:

δ =
h̄3

N

κ
=

(3Re)11/9

Γ 1/3
, ζ =

cotβ

κ
=

cot β (3Re)2/9

Γ 1/3
,

η =
1

κ2
=

(3Re)4/9

Γ 2/3
, M =

Ma

κh̄2
N

=
Ma

Γ 1/3(3Re)4/9
,


 (3.3)
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along with B = Bi (3Re)1/3 defined in (2.2); δ is the reduced Reynolds number†
and ζ the reduced slope. The parameter η appears in all second-order streamwise
dissipative terms in the momentum and heat transport equations. Similarly M is a
reduced Marangoni number. Since the long-wave approximation requires the slope
to be small, η must be small – or equivalently the Kapitza number large enough –
so that in many studies dealing with vertical isothermal film flows (ζ = 0, M = 0)
η is set to zero and the set of parameters is reduced to δ only (see e.g. Chang
1994). Again, considering isothermal vertical flows, another advantage of the above
set of parameters is that, using Shkadov’s scalings, the speed and maximal height
of the solitary waves depend strongly on the reduced Reynolds number δ and are
not affected much by the strength of the streamwise viscous terms as measured by
η, whereas the amplitude of the front-running capillary waves depends strongly on η

(see e.g. the direct numerical computations by Salamon, Armstrong & Brown 1994).
Still considering isothermal vertical flows, if the effect of inertia becomes dominant,
the maximum slope of the waves ceases to correspond to the equilibrium of the
streamwise gravity and surface tension but rather to the largest wavenumber triggered
by the instability which corresponds to the critical wavenumber kc ∝

√
Re/We (see

(2.4)). Therefore εRe ∼ kcRe ∼ δ3/2 and the transition from the drag–gravity regime
(εRe � 1) to the drag–inertia regime (εRe = O(1)) corresponds to δ of order unity. As
already noticed by Ooshida (1999), this transition corresponds closely to the loss of
solitary wave solutions observed for the Benney equation for δ ≈ 0.986. Finally, the
reduced parameters (3.3) also give a good indication of the influence of the different
physical effects on these waves. Therefore, since Shkadov’s scalings are appropriate
for the study of the strongly nonlinear solitary waves, in the next section we shall
compare the main properties of the solutions obtained from the regularized reduced
model – namely phase speed c, maximum height and shapes – using these scalings
also.

Interestingly, all the reduced parameters (3.3) vanish as the Reynolds number tends
to zero except for the reduced Marangoni number which tends to infinity. Hence, for
small flow rates, δ � 1, ζ � 1 and η � 1 and the corresponding terms multiplied by
these parameters can be neglected. Integrating (3.1) twice thus leads to

q =
h3

3
(1 + ∂xxxh) − M

2
h2∂xθ, θ =

1

1 + Bh
= 1 − Bh + O(B2), (3.4)

and the mass conservation equation ∂th + ∂xq = 0 then gives

∂th + ∂x

[
h3

3
(1 + ∂xxxh) +

MB

2
h2∂xh

]
= 0 (3.5)

where the leading-order term involving B has been retained. Apart from numerical
factors and different scalings, equation (3.5) is identical to the one obtained by
Kalliadasis et al. (2003). The reduced parameter proposed by Kalliadasis et al. (2003)
is ∝ 1/BM . These authors observed that homoclinic solutions to (3.5) tend to infinity
as their parameter tends to zero, that is when MB tends to infinity. Because we
have MB ∝ (3Re)−1/9, this limit corresponds to the zero Reynolds number limit. As
was pointed out by these authors, in this region of small flow rates and hence small
film thicknesses, the film is expected to form isolated drops separated by very thin

† The reduced Reynolds number defined initially by Shkadov (1977) was δShk = δ/45. The
numerical factor originates from a slightly different choice of variables.
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layers of fluid for which van der Waals forces become important. Such forces of
non-hydrodynamic origin are expected to arrest the singularity formation observed
for the homoclinic orbits in the region of small Reynolds numbers. Inversely, if Re
tends to infinity, both M and MB tend to zero and the velocity and temperature fields
are decoupled in this limit. Therefore, at large Reynolds numbers, the shape of the
wave should be unaffected by the Marangoni effects. These two limits will enable us
to elucidate the influence of Reynolds number on the shape of the waves for given
inclination angle and physical properties.

In what follows, we discuss in detail the properties of the solitary wave solutions of
the system (1.1) as well as the influence of the different physical effects and different
parameters, primarily Re, Pr and Ma, on these waves. In all cases the wall is taken
to be vertical – for the isothermal case vertical apparatus is most frequently used
in experiments (Alekseenko, Nakoryakov & Pokusaev 1994). Our main interest is
to decipher the coupling between the hydrodynamic H-mode and thermocapillary
S-mode in the nonlinear regime and particularly for large amplitude waves, that is in
the drag–inertia regime where inertia plays a dominant role.

Consider now travelling wave solutions propagating at constant speed c and hence
stationary in the moving frame ξ = x − ct . In this frame, the set of equations (1.1) can
be written in dynamical system form as

dU
dξ

= F(U; δ, ζ, η, B, M, Q), (3.6)

where U =(h, h′, h′′, θ, θ ′)t . The constant Q is the mass flux under the wave in
the moving frame of reference and is obtained after one integration of the mass
conservation equation −c h′ + q ′ = 0, Q = q − c h. For solitary pulses, the Nusselt flat-
film solution h = 1 should be approached far from the pulses which gives Q =1/3−c.
Since the speed of the waves is larger than the maximum velocity in the liquid, Q

is a negative constant. Note, however, that in experiments, the time-averaged film
thickness can be smaller downstream than at the inlet (the presence of the waves
usually accelerates the fluid motion). As a consequence, the local Reynolds number
varying with the third power of the thickness can be significantly smaller than the
Reynolds number based on the flow rate or the inlet Nusselt film thickness.

Singe-hump solitary wave solutions – also called ‘principal homoclinic orbits’ by
Gelndinning & Sparrow (1984) – are computed using the continuation software
Auto97 with the Homcont option for tracing homoclinic orbits (Doedel et al. 1997).
In figure 5 we present the maximum amplitude and speed of the single-hump solitary
wave family of the regularized reduced model as a function of Re for different values
of Prandtl and Marangoni numbers. For comparison purposes, we also show in the
same figure the wave family corresponding to isothermal flows (Ma = 0). In all our
computations in this section we take the values Γ = 250 and Bi =0.1 for the Kapitza
and Biot numbers, respectively. As already mentioned, the Kapitza number is chosen
much smaller than its value for common liquids in order to clearly isolate the role of
the second-order dissipative and inertia terms.

The single-hump solitary wave solution branch obtained from (1.1) seems to exist
for all Reynolds numbers, i.e. it does not present any turning points with branch
multiplicity connected to finite-time blow-up behaviour as for the Benney expansion
(Pumir, Manneville & Pomeau 1983; Oron & Gottlieb 2002; Scheid et al. 2005).
Different reduced second-order formulations – from the family of reduced models
developed in Part 1 – were also tested (not shown) and their solitary-wave solution
branches do exhibit turning points. This, along with the good agreement with the
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Figure 5. (a) Speed and (b) maximum height of single-hump solitary wave solutions computed
with the regularized reduced model (1.1) for different values of Ma and Pr with cot β = 0,
Bi= 0.1 and Γ = 250.

Orr–Sommerfeld eigenvalue problem shown in the previous section, confirms that
(1.1) is indeed a well-behaved low-dimensional model.

As expected, increasing the Marangoni number leads to larger amplitudes and
speeds since the two instability modes reinforce each other. This effect is more
pronounced at low Reynolds numbers (the reduced Marangoni number M defined in
(3.3) is proportional to Re−4/9). This is also consistent with our linear stability analysis
in the previous section which suggests that the Marangoni effect is amplified in the
region of small Reynolds numbers. On the other hand, in the region of large Re,
the different curves merge with the isothermal one. In this region of large Reynolds
numbers the destabilizing interfacial Marangoni forces are weaker than the dominant
inertia forces.

The effect of Prandtl number is more subtle. At low Reynolds numbers, larger
values of Pr seem to favour the instability, whereas at larger Re, we have the opposite
effect. To elucidate the influence of Prandtl number, we compute the streamlines and
isotherms in the moving frame by computing the velocity and temperature fields
from the polynomial expansions and by utilizing the first-order approximation of the
corrections si and ti (see Part 1 for details). Note that the second-order corrections for
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Figure 6. Streamlines (top) and isotherms (bottom) of a solitary wave in its moving frame
obtained for Pr = 7, Re= 0.01, cotβ =0, Γ = 250, Ma = 50 and Bi =0.1. The dashed line
represents the interfacial temperature θ . There are 12 isotherms separating 13 equally spaced
intervals, ranging from T = 1 on the wall to Tmin = 0.929.

both fields can also be computed from the residuals associated with the corresponding
test functions followed by an inversion of the resulting linear system. Nevertheless, due
to the complexity of this procedure, we assume here that the velocity and temperature
fields are described sufficiently accurately by their representation at first order, at
least for the purpose of a qualitative discussion. In all computations of this section
the Marangoni number is fixed at Ma =50.

Figure 6 shows the streamlines and isotherms for Re = 0.01. The reduced parameters
are δ = 0.0022, η =0.0053, M =37.6 and B = 0.031. With the product Prδ, η and B

being small, the film flow evolution is well approximated by the evolution equation
for the free surface (3.5). We also have ∂yyT ≈ 0 so that the temperature field is
nearly linear, T ≈ 1 − By. Therefore, the isotherms are nearly aligned with the wall.
Notice also from figure 6 that the interfacial temperature θ is nearly uniform since
B � 1. For such a small Reynolds number, inertial effects are almost absent and the
Marangoni effect is free to form large-amplitude humps. Consequently, the phase
speed is sufficiently large – c =2.35 for the wave shown in figure 6 – to create a
recirculation zone at the crest of the wave along with the transport of fluid mass
downstream. Interestingly, this behaviour triggered by the Marangoni effect is very
similar to that triggered by inertia for larger Reynolds numbers (see below).

The streamlines and isotherms computed for Re= 1 and Pr= 1 and 7 are shown in
figure 7. The reduced parameters are now δ = 0.61, η = 0.041, M = 4.86 and B =0.14.
Again, at Pr = 1, the isotherms are nearly aligned (with both B and Prδ being still
relatively small). Conversely, at Pr= 7, the isotherms are deflected upwards by the
movement of the fluid in the crest. Therefore, the minimum of temperature (which
is achieved at the crest of the solitary wave) increases to Tmin = 0.8 – from 0.765
for Pr =1 – and consequently the Marangoni effect is reduced, and therefore the
amplitude and the phase speed of the wave are also reduced. The transport of heat
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Figure 7. Streamlines (top) and isotherms (bottom). Re= 1 and all other parameters are given
in the caption of figure 6. In (a) Pr = 1 and Tmin = 0.765 and in (b) Pr = 7 and Tmin = 0.8.
In all cases, a total of 12 isotherms separating 13 equally spaced intervals between T = 1 and
T = Tmin is shown.
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Figure 8. Streamlines (top) and isotherms (bottom) for Re= 2. All other parameters are given
in the caption of figure 6. In (a), Pr = 1 and Tmin = 0.591 and in (b), Pr = 7, Tmin = 0.429 and
Tmax = 1.26.

by the motion of the fluid has a stabilizing effect in this case. Nevertheless, at larger
Reynolds numbers, inertia dominates, the solitary wave amplitude and speed increase
dramatically and a recirculation zone appears inside the solitary wave. Streamlines
computed for Re= 2 and Re= 3 (δ = 1.42 and δ = 2.33) shown in figures 8 and 9 do
exhibit such recirculation zones, turning clockwise, and implying the existence of two
stagnation points at the free surface at the back and the front of the primary solitary
hump. In this case solitary waves transport the trapped fluid mass downstream.

Comparison with the streamlines at Re= 3 when the thermocapillary effect is
switched off (Ma= 0) indicate that the Marangoni instability shifts one of the
stagnation points from the front of the wave to its crest (see figure 10). Thus,
because thermocapillary stresses push the fluid from the rear to the top of the crest,
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Figure 9. Streamlines (top) and isotherms (bottom) for Re= 3 and Pr = 1. Here Tmin = 0.414.
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Figure 10. Streamlines for Ma =0, Re= 3, cot β = 0 and Γ = 250.

they reinforce the clockwise circulation in the crest. Meanwhile, the transport of heat
by the downward fluid motion at the front of the recirculation zone cools down the
surface at its crest and the minimum of interfacial temperature is now located close to
the stagnation point at the front. Therefore the two mechanisms reinforce each other,
promoting the speed and amplitude of the wave. This explains the formation of a
recirculation zone at Re = 2 and Ma = 50 whereas it is not present if Ma = 0. Indeed,
the abrupt increase of amplitude and speed of the solitary waves corresponding to the
transition from the drag–gravity to the drag–inertia regime occurs for smaller values
of the Reynolds number if the Marangoni effect is present (see figure 5).

Comparison of figures 8(a) and 8(b) indicates that increasing the Prandtl number
from Pr= 1 to Pr =7 at Re =2 enhances the cooling process of the crest and reduces
the temperature minimum from Tmin ≡ θmin = 0.591 – which appears on the surface
and very close to the stagnation point – to Tmin = 0.429 somewhere in the bulk of
the wave, thus contributing to the Marangoni effect. Similarly, comparing figures 8(a)
and 9, Tmin ≡ θmin drops from to 0.591 to 0.414 when Re increases from 2 to 3 at
Pr= 1.
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However, if the H- and S- instability modes reinforce each other for Re =2
and Re = 3, the speed and amplitudes of the solitary waves do decrease as the
Prandtl number increases as indicated in figure 5. This apparent paradox can
be explained only by observing that on shifting one of the stagnation points to
the crest, thermocapillarity tightens the streamlines and isotherms at the front of
the recirculation zone. Moreover, the circulation in the hump is enhanced by the
Marangoni stresses at the surface. Therefore, large temperature and velocity gradients
appear in that region of the flow. As a consequence, the dissipation of heat and
momentum is increased, which contributes to stabilizing the growth of the instability
and to limiting the speed and amplitude of the solitary waves.

For R = 2 and Pr = 7, the maximum of temperature is Tmax = 1.216 and is no
longer located at the wall. Notice also that at larger values of the Reynolds number,
negative values of the dimensionless temperature appear in the fluid. Turning back
to dimensional quantities, this would imply that the temperature in the fluid can be
locally greater than the temperature of the wall or smaller than the temperature of
the air. This obviously has no physical basis as the temperature everywhere in the
fluid should be bounded between the wall and air temperatures. To understand the
appearance of this unphysical behaviour when a recirculation zone is present, i.e. for
large-amplitude waves, let us consider the high-Péclet-number limit Pe= PrRe � 1.
In this case, transport of heat via molecular diffusion can be neglected except in a
diffusive boundary layer of thickness Pe−1/2 on the stagnation line and part of the
interface associated with the recirculation zone (see e.g. discussion by Shraiman 1987).
Hence, cross-stream convection associated with the recirculation zone dominates over
diffusion, the temperature field in the recirculation zone is simply transported by the
flow and the streamlines are identical to the temperature contours (see e.g. Trevelyan
et al. 2002). This means that the temperature along each streamline is constant due
to the strong advection mixing. The temperature field becomes a passive scalar and
is simply transported by the flow. Hence, within the recirculation zone the isotherms
are closed curves. Consequently, the temperature can vary locally in the horizontal
direction only and the hypothesis ∂yT � ∂xT necessary for the derivation of our
models would be violated in these regions.†

At the same time we have neglected in the averaged heat balance (1.1c) the transport
of heat due to the Marangoni flow, Marθ (see § 5 in Part 1). Though these terms are
formally of second order, they could be quite significant due to the enhancement
of the Marangoni flow by the hydrodynamics. This might also contribute to the
appearance of negative temperatures. Different possibilities – not examined here –
exist to cure this strong limitation on the applicability of the three-equation model
(1.1). One such possibility would be to consider more unknowns, such as t1, for the
description of the heat transfer process in the flow. Another possibility would be to
relax the assumption ∂yT � ∂xT and use instead the full energy equation without
any approximations. In this case the full energy equation would have to be solved
numerically to obtain the temperature distribution within the film.

The basic question here is whether the observed limitations are truly due to a
breakdown of the basic assumptions at large Péclet numbers and for large-amplitude
waves for which recirculation zones could be observed, or are spuriously caused by
the addition of the strongly nonlinear second-order terms appearing in the expansion

† Note however that the presence of recirculation zones does not invalidate the assumption
u � v necessary for any boundary-layer approach since the computed streamlines correspond to the
envelopes of the velocity field in the moving frame (u − c, v)t .
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Figure 11. Streamlines (top) and isotherms (bottom) for Re= 2.5 and Pr =7 obtained from
the first-order model. Here Tmin = − 10 and Tmax = 4.

procedure. To check these possibilities, we have computed the single-hump solitary
wave solution branch corresponding to the first-order model (system (4.18) in Part 1)
for Γ =250, cot β = 0, Bi = 0.1 and two values of the Prandtl number, Pr= 1 and
Pr= 7. In both cases, a limit point, at which the branch of solutions terminates,
appears (at Re ≈ 2.4 for Pr = 1 and Re ≈ 2.7 for Pr =7). This loss of solutions follows
the formation of steep temperature gradients in the bulk of the flow as is evident
from the isotherms shown in figure 11 at Re= 2.5 and Pr = 7. In fact, the isothermal
first-order model, an improved representation of the Shkadov model, has no limit
points and so the limit points for the non-isothermal model must be due to the
treatment of the energy equation. Notice that, quite surprisingly, the loss of solutions
appears at smaller values of Re for Pr =1 than for Pr = 7. This unusual result can
be attributed to the fact that the transition between the drag–gravity and the drag–
inertia regimes is delayed by the upward displacement of the isotherms by the flow as
already observed in figure 7. Consequently, the second-order terms do contribute to
the delay of the breakdown of our formulation and hence the limitations of our model
are not caused by the added second-order terms. This effect is certainly due to the
fact that the second-order diffusion terms reduce the range of unstable wavenumbers
and smooth out temperature gradients (compare the amplitude of the front-running
capillary wave preceding the main hump in figures 9 and 11).

It is important to emphasize that unlike the first-order model, the second-order
regularized reduced model has no limit points at which the solution branches
terminate. This is due to an improved treatment of the energy equation by taking into
account the second-order dissipative terms in the streamwise direction as mentioned
above. The first-order model on the other hand has not taken into account these
terms – contrast (1.1c) with (4.18c) of Part 1. It is precisely the presence of diffusion
of heat in the streamwise direction for the regularized reduced model that smooths
out the large temperature gradients as was pointed out above and hence this model
has no limit points. Nevertheless, for sufficiently large Péclet numbers and as we
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have already pointed out, negative temperatures are observed somewhere in the bulk
of the wave. The Re value at which this happens depends on Pr, with the larger
Pr corresponding to smaller Re at which negative temperatures appear. After these
points, the bifurcation diagrams for the speed of the solitary waves c as a function of
Re can be continued to larger Re but the temperature will remain negative (in fact
continuation of the curves in figure 5 will eventually lead to negative temperatures).
The reason that this continuation is possible is that c is effectively determined by
the momentum equation which is treated accurately; it is the treatment of the energy
equation that needs to be improved and some suggestions for this have already been
discussed above.

4. Concluding remarks
We have analysed the linear and nonlinear regimes of the two long-wave instability

modes for a film falling down a uniformly heated plane by using the regularized
reduced model derived in Part 1. The linear stability properties of the model are in
good agreement with the Orr–Sommerfeld analysis for small and moderate Reynolds
numbers and for all Marangoni numbers (§ 2) while its single-hump solitary wave
solution branches do not exhibit the non-physical turning points encountered with
the Benney equation (§ 3). Therefore, time-dependent integrations of the regularized
reduced model (1.1) (not done here) should not lead to the finite-time blow-up
behaviour observed with the Benney expansion in the region of the parameter space
where solitary waves do not exist.

We also examined in detail the shape, streamlines and isotherms of single-
hump solitary waves obtained from the regularized reduced model and for different
Reynolds, Prandtl and Marangoni numbers. In the drag–gravity regime, the transport
of energy by the flow contributes to heating the crest of the solitary waves. In this
region, the inertial terms in the averaged heat transport equation have a stabilizing
effect. For Re � 1, inertial effects are nearly absent and the Marangoni effect is free
to form large-amplitude humps and hence large phase speed so that a recirculation
zone at the crest of the wave appears. As far as we are aware, a recirculation zone has
never been obtained before for such small Reynolds numbers and is usually known
to exist only in the drag–inertia regime for large Reynolds numbers. In this regime,
the amplitudes and speeds of the solitary waves are also large. However, the effect
of the transport of heat by the flow is reversed. One of the stagnation points (in the
frame moving with the wave) is shifted from the front of the wave to its crest. Thus,
the Marangoni effect enhances the recirculation in the crest and promotes a strong
downward flow there. As a consequence, the transport of heat by the flow contributes
to cooling the crest and amplifying the Marangoni effect. Nevertheless, this strong
circulation and downward flow create a strong shear and therefore increase the effect
of viscous dissipation which in turn reduces the amplitude and speed of the waves
if the Prandtl number increases. These observations indicate that the interaction of
the hydrodynamic H-mode and the Marangoni S-mode is non-trivial especially in the
region of large-amplitude solitary waves.

With regard to experiments, comparisons with the theory developed here should
be facilitated by the fact that most fluids used in applications have high Kapitza
numbers. Note also that the heat transfer coefficient is generally small so that the Biot
number is also small. Thus considering the limit Bi � 1, the basic-state temperature
gradient b⊥ = (T |y =0 −T |y = hN

)/hN = Bi/(1+BihN) can be assumed to be independent
of the film thickness h, b⊥ ≈ Bi. This basic-state temperature gradient is then uniquely
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defined by the heat transfer coefficient q0 and the diffusivity κ and not by the flow
rate. As a consequence, many studies on Marangoni instabilities have used explicitly
the gradient b⊥ to scale the temperature field (Takashima 1981; Davis 1987; Goussis &
Kelly 1991). Following this approach, one can define a reference temperature Ts0

corresponding to the surface temperature of a flat film of thickness equal to the
length scale ν2/3(g sin β)−1/3. A new dimensionless temperature T � is thus introduced
using the difference Tw − Ts0 such that T � = 1 at the wall and T � = 0 at the surface of
the film of thickness l0. T and T � are then related by

T =
1 + BiT �

1 + Bi
, (4.1)

and the heat transfer condition at the interface becomes

−∇T � · n = BiT � + 1. (4.2)

The linear stability analysis of a thin film in the limit of a vanishing Biot number
was considered by Takashima (1981). Obviously, taking this limit is not consistent with
the problem in hand as Bi =0 implies that the transfer of heat through the fluid layer
vanishes and therefore the temperature at the free surface is constant. Nevertheless,
the product Ma Bi can be O(1) even if Bi is small and so the Marangoni effect can
be strong. Thus, Takashima’s limit corresponds in fact to a constant temperature
gradient q0(Tw − Ta)/κ , that is simply obtained by neglecting the term BiT � in (4.2)
which gives

∇T � · n = −1. (4.3)

In this limit, the change of variables from the dimensionless temperature T to
T � given by (4.1) is translated to the definition of the temperature at the free
surface as θ = (1 + Biθ�)/(1 + Bi). The approximation of the heat transfer at the
interface leading from (4.2) to (4.3) can be readily applied in our formulation by
expanding θ ≈ 1 + Bi(θ� − 1). A modified system of equations is then obtained simply
by substituting θ� for θ in (1.1) and keeping the leading-order terms in Bi:

∂th = −∂xq, (4.4a)
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, (4.4b)
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Now the Marangoni and Biot numbers appear through their product only, which
reduces the number of relevant parameters by one and simplifies the parametric study
of the nonlinear waves.
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Another open question concerns large Péclet number flows. In this case the
assumption of a small temperature gradient in the cross-stream direction is violated
such that our three-variable model is no longer capable of describing accurately
the wave dynamics. Nevertheless, a suggestion can be made. Indeed, our linear
stability analysis and computations of solitary waves have suggested that more fields
in addition to θ are necessary to correctly represent the heat transport process. In
particular, we wish to overcome the spurious appearance of temperatures lower than
the temperature of air that we observed for large-amplitude waves for sufficiently
large Reynolds and Prandtl numbers. Hence, the aim would be to obtain reliable
models, e.g. in terms of h, q , θ and t1, compatible with the long-wave expansion up to
second order, and which would also enable us to extend the present study to larger
Péclet numbers. This and related issues will be addressed in a future study.

Despite the limitations of the regularized reduced model for large Péclet numbers,
the model has substantially extended the region of validity of the Benney long-wave
expansion which exhibits a turning point with branch multiplicity at an O(1) value
of Re, and for all Péclet numbers (see Kalliadasis et al. 2003), while in these regions
our model has no turning points and predicts the continuing existence of solitary
waves for all Reynolds numbers. Moreover, the appearance of unphysical negative
temperatures at large Prandtl numbers is connected to the formation of recirculation
zones in the solitary waves. Therefore, the regularized reduced model (1.1) should
give results in reasonable agreement with experiments for waves of smaller amplitude
for which no recirculation zones are observed.
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